Loads the FER-2013 dataset for facial expression recognition. The dataset contains grayscale images
(48x48) of human faces, each labeled with one of seven emotion categories:
"Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", and "Neutral".
fer_dataset(
root = tempdir(),
train = TRUE,
transform = NULL,
target_transform = NULL,
download = FALSE
)(string, optional): Root directory for dataset storage,
the dataset will be stored under root/fer2013.
Logical. If TRUE, use the training set; otherwise, use the test set. Not applicable to all datasets.
Optional. A function that takes an image and returns a transformed version (e.g., normalization, cropping).
Optional. A function that transforms the label.
Logical. If TRUE, downloads the dataset to root/. If the dataset is already present, download is skipped.
A torch dataset of class fer_dataset.
Each element is a named list:
x: a 48x48 grayscale array
y: an integer from 1 to 7 indicating the class index
The dataset is split into:
"Train": training images labeled as "Training" in the original CSV.
"Test": includes both "PublicTest" and "PrivateTest" entries.
Other classification_dataset:
caltech_dataset,
cifar10_dataset(),
eurosat_dataset(),
fgvc_aircraft_dataset(),
flowers102_dataset(),
mnist_dataset(),
oxfordiiitpet_dataset(),
tiny_imagenet_dataset()
if (FALSE) { # \dontrun{
fer <- fer_dataset(train = TRUE, download = TRUE)
first_item <- fer[1]
first_item$x # 48x48 grayscale array
first_item$y # 4
fer$classes[first_item$y] # "Happy"
} # }