Constructs EfficientNetV2 model architectures as described in EfficientNetV2: Smaller Models and Faster Training.
model_efficientnet_v2_s(pretrained = FALSE, progress = TRUE, ...)
model_efficientnet_v2_m(pretrained = FALSE, progress = TRUE, ...)
model_efficientnet_v2_l(pretrained = FALSE, progress = TRUE, ...)model_efficientnet_v2_s(): EfficientNetV2-S model
model_efficientnet_v2_m(): EfficientNetV2-M model
model_efficientnet_v2_l(): EfficientNetV2-L model
Image classification with 1000 output classes by default (ImageNet).
The models expect input tensors of shape (batch_size, 3, H, W).
Typical values for H and W are 384 for V2-S, 480 for V2-M,
and 512 for V2-L.
| Model | Resolution | Params (M) | GFLOPs | Top-1 Acc. |
| V2-S | 384 | 24 | 8.4 | 83.9 |
| V2-M | 480 | 55 | 24 | 85.1 |
| V2-L | 512 | 119 | 55 | 85.7 |
Other models:
model_alexnet(),
model_efficientnet,
model_inception_v3(),
model_mobilenet_v2(),
model_resnet,
model_vgg