ResNet models implementation from Deep Residual Learning for Image Recognition and later related papers (see Functions)
model_resnet18(pretrained = FALSE, progress = TRUE, ...)
model_resnet34(pretrained = FALSE, progress = TRUE, ...)
model_resnet50(pretrained = FALSE, progress = TRUE, ...)
model_resnet101(pretrained = FALSE, progress = TRUE, ...)
model_resnet152(pretrained = FALSE, progress = TRUE, ...)
model_resnext50_32x4d(pretrained = FALSE, progress = TRUE, ...)
model_resnext101_32x8d(pretrained = FALSE, progress = TRUE, ...)
model_wide_resnet50_2(pretrained = FALSE, progress = TRUE, ...)
model_wide_resnet101_2(pretrained = FALSE, progress = TRUE, ...)
(bool): If TRUE, returns a model pre-trained on ImageNet.
(bool): If TRUE, displays a progress bar of the download to stderr.
Other parameters passed to the resnet model.
model_resnet18()
: ResNet 18-layer model
model_resnet34()
: ResNet 34-layer model
model_resnet50()
: ResNet 50-layer model
model_resnet101()
: ResNet 101-layer model
model_resnet152()
: ResNet 152-layer model
model_resnext50_32x4d()
: ResNeXt-50 32x4d model from "Aggregated Residual Transformation for Deep Neural Networks"
with 32 groups having each a width of 4.
model_resnext101_32x8d()
: ResNeXt-101 32x8d model from "Aggregated Residual Transformation for Deep Neural Networks"
with 32 groups having each a width of 8.
model_wide_resnet50_2()
: Wide ResNet-50-2 model from "Wide Residual Networks"
with width per group of 128.
model_wide_resnet101_2()
: Wide ResNet-101-2 model from "Wide Residual Networks"
with width per group of 128.
Other models:
model_alexnet()
,
model_mobilenet_v2()