ResNet models implementation from Deep Residual Learning for Image Recognition and later related papers (see Functions)
model_resnet18(pretrained = FALSE, progress = TRUE, ...)
model_resnet34(pretrained = FALSE, progress = TRUE, ...)
model_resnet50(pretrained = FALSE, progress = TRUE, ...)
model_resnet101(pretrained = FALSE, progress = TRUE, ...)
model_resnet152(pretrained = FALSE, progress = TRUE, ...)
model_resnext50_32x4d(pretrained = FALSE, progress = TRUE, ...)
model_resnext101_32x8d(pretrained = FALSE, progress = TRUE, ...)
model_wide_resnet50_2(pretrained = FALSE, progress = TRUE, ...)
model_wide_resnet101_2(pretrained = FALSE, progress = TRUE, ...)model_resnet18(): ResNet 18-layer model
model_resnet34(): ResNet 34-layer model
model_resnet50(): ResNet 50-layer model
model_resnet101(): ResNet 101-layer model
model_resnet152(): ResNet 152-layer model
model_resnext50_32x4d(): ResNeXt-50 32x4d model from "Aggregated Residual Transformation for Deep Neural Networks"
with 32 groups having each a width of 4.
model_resnext101_32x8d(): ResNeXt-101 32x8d model from "Aggregated Residual Transformation for Deep Neural Networks"
with 32 groups having each a width of 8.
model_wide_resnet50_2(): Wide ResNet-50-2 model from "Wide Residual Networks"
with width per group of 128.
model_wide_resnet101_2(): Wide ResNet-101-2 model from "Wide Residual Networks"
with width per group of 128.
Other classification_model:
model_alexnet(),
model_convnext,
model_efficientnet,
model_efficientnet_v2,
model_facenet,
model_inception_v3(),
model_maxvit(),
model_mobilenet_v2(),
model_mobilenet_v3,
model_vgg,
model_vit