ResNet models implementation from Deep Residual Learning for Image Recognition and later related papers (see Functions)

model_resnet18(pretrained = FALSE, progress = TRUE, ...)

model_resnet34(pretrained = FALSE, progress = TRUE, ...)

model_resnet50(pretrained = FALSE, progress = TRUE, ...)

model_resnet101(pretrained = FALSE, progress = TRUE, ...)

model_resnet152(pretrained = FALSE, progress = TRUE, ...)

model_resnext50_32x4d(pretrained = FALSE, progress = TRUE, ...)

model_resnext101_32x8d(pretrained = FALSE, progress = TRUE, ...)

model_wide_resnet50_2(pretrained = FALSE, progress = TRUE, ...)

model_wide_resnet101_2(pretrained = FALSE, progress = TRUE, ...)

Arguments

pretrained

(bool): If TRUE, returns a model pre-trained on ImageNet.

progress

(bool): If TRUE, displays a progress bar of the download to stderr.

...

Other parameters passed to the resnet model.

Functions

See also